Search results

1 – 2 of 2
Article
Publication date: 19 June 2019

Jéromine Dumon, Yannick Bury, Nicolas Gourdain and Laurent Michel

The development of reusable space launchers requires a comprehensive knowledge of transonic flow effects on the launcher structure, such as buffet. Indeed, the mechanical…

Abstract

Purpose

The development of reusable space launchers requires a comprehensive knowledge of transonic flow effects on the launcher structure, such as buffet. Indeed, the mechanical integrity of the launcher can be compromised by shock wave/boundary layer interactions, that induce lateral forces responsible for plunging and pitching moments.

Design/methodology/approach

This paper aims to report numerical and experimental investigations on the aerodynamic and aeroelastic behavior of a diamond airfoil, designed for microsatellite-dedicated launchers, with a particular interest for the fluid/structure interaction during buffeting. Experimental investigations based on Schlieren visualizations are conducted in a transonic wind tunnel and are then compared with numerical predictions based on unsteady Reynolds averaged Navier–Stokes and large eddy simulation (LES) approaches. The effect of buffeting on the structure is finally studied by solving the equation of the dynamics.

Findings

Buffeting is both experimentally and numerically revealed. Experiments highlight 3D oscillations of the shock wave in the manner of a wind-flapping flag. LES computations identify a lambda-shaped shock wave foot width oscillations, which noticeably impact aerodynamic loads. At last, the experiments highlight the chaotic behavior of the shock wave as it shifts from an oscillatory periodic to an erratic 3D flapping state. Fluid structure computations show that the aerodynamic response of the airfoil tends to damp the structural vibrations and to mitigate the effect of buffeting.

Originality/value

While buffeting has been extensively studied for classical supercritical profiles, this study focuses on diamond airfoils. Moreover, a fluid structure computation has been conducted to point out the effect of buffeting.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 October 2021

Nicolas Gourdain, Jéromine Dumon, Yannick Bury and Pascal Molton

The transonic buffet is a complex aerodynamics phenomenon that imposes severe constraints on the design of high-speed vehicles, including for aircraft and space launchers. The…

Abstract

Purpose

The transonic buffet is a complex aerodynamics phenomenon that imposes severe constraints on the design of high-speed vehicles, including for aircraft and space launchers. The origin of buffet is still debated in the literature, and the control of this phenomenon remains difficult. This paper aims to propose an original scenario to explain the origin of buffet, which in turn opens promising perspectives for its alleviation and attenuation.

Design/methodology/approach

This work relies on the use of numerical simulations, with the idea to reproduce the buffet phenomenon in a transonic aileron designed for small space launchers. Two numerical approaches are tested: unsteady Reynolds averaged Navier–Stokes (URANS) and large-eddy simulation (LES). The numerical predictions are first validated against available experimental data, before to be analysed in detail to identify the origin of buffet on the studied configuration. A complementary numerical study is then conducted to assess the possibility to delay the onset of buffet.

Findings

The buffet control strategy is based on wall cooling. By adequately choosing the wall temperature, this work shows that it is feasible to delay the emergence of buffet. More precisely, this paper highlights the crucial role of the subsonic flow inside the boundary layer, showing the existence of upstream travelling pressure waves that are responsible for the flow coupling between both sides of the airfoil, at the origin of the buffet phenomenon.

Originality/value

This paper proposes a new scenario to explain the origin of buffet, based on the use of a Fanno and Rayleigh flow analogies. This approach is used to design a control solution based on a modification of the wall temperature, showing very promising results.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2